
Detachment and diffusive-convective transport in an evolving heterogeneous two-dimensional
biofilm hybrid model

E. Luna, G. Domínguez-Zacarias, C. Pio Ferreira, and J. X. Velasco-Hernandez
Instituto Mexicano del Petróleo, D.F. 07730, Mexico

(Received 29 July 2004; published 20 December 2004)

Under the hypothesis of correlation between biofilm survival and nutrient availability, by considering fluid
drag forces and mortality due to nutrient depletion, a biofilm detachment/breaking condition is derived. The
mechanisms leading to biofilm detachment/breaking are discussed. We construct and describe a hybrid model
for a heterogeneous biofilm attached to walls in a channel where liquid is flowing. The model is called hybrid
because it couples conservation equations with a cellular automaton. The biofilm layer is viewed as a porous
medium with variable porosity, tortuosity, and permeability. The model is solved using asymptotic and finite
differences methods. Results for porosity, nutrient distribution, and average surface location are presented. The
model is capable of reproducing biofilm heterogeneity as well as the typical surface fingering(mushroomlike
structure).
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I. INTRODUCTION

As defined by Donlan[1] a biofilm is an assemblage of
surface-associated microbial cells that is enclosed in an ex-
tracellular polymeric substance matrix. Biofilms play impor-
tant and diverse roles in many areas of applied science and
technology such as oil enhanced recovery and transportation,
pharmaceutical research, food processing, medical devices,
antibiotic resistance, electrochemical corrosion, waste water
treatment, and others[2]. In this work, we present a model
for the interaction of fluid flow and biofilm internal structure.
Our aim is to explore plausible mechanisms for biofilm per-
sistence and eventual detachment based on the interaction
between fluid flow, the spatial structure of microbial commu-
nities, and transport of nutrients. To achieve this aim we have
constructed a hybrid mathematical model. In areas such as
the study of antimicrobial resistance and microbial enhanced
corrosion(MIC), biofilms are known for being difficult to
eradicate[2,3] given their ability for evolving resistance
against biocides, antibiotics and, in fact, against every single
antimicrobial substance applied to them. Using the model
presented in this work we would like to predict the time to
maximal biofilm growth, the time to biofilm detachment and,
ultimately, we would like to use the model to predict optimal
dosages of biocides or antibiotics to prevent the development
of resistance and hence biofilm destruction and to predict the
onset of pitting in the case of MIC. This last objective is still
beyond the model we describe here but research is under way
that addresses this problem and that will be published else-
where. In particular we explore here the processes of biofilm
detachment, bulk flow through the system, diffusive and con-
vective transport of nutrients, and biofilm growth. As pointed
out by Stewartet al. [2] engineering biofilm control is a
formidable task because the interaction of biofilm with its
environment involves very complex processes at the cellular,
physicochemical, genetically, and physical levels of interac-
tion. Mathematical models can be considered methodological
tools for the study of complex systems since they allow us to
organize and integrate the diverse phenomena occurring in a

biofilm in a systematic and efficient way. The predictive and
explanatory capacity of a well-formulated model is invalu-
able for the study of this kind of complex phenomena. The
model presented here is an attempt to do this.

Classical mathematical models for biofilm structure and
dynamics are mainly one dimensional[4–8]. This simplifi-
cation, although natural and justifiable in certain situations,
is clearly insufficient to describe the heterogeneous nature of
microbial communities both at the surface as well as internal
levels [9]. Recently, several multidimensional models have
appeared that have been used to successfully explore both
structural and dynamic behaviors of real biofilms[7,10–16].
These multidimensional models are based on cellular au-
tomata and/or continuum conservation equations. Roughly
speaking, these are hybrid models where conservation for
momentum (Navier–Stokes or Darcy’s law) and species
equations are solved in the surrounding fluid as well as in the
bacterial layer seen as a solid or a homogeneous porous me-
dium. Another important area of research has been the study
of the internal biofilm morphology. In this area we can cite
the work of Hermanowiczet al. [17], reporting that multi-
fractal internal structure varies with the geometric scale and
that there exists, possibly, a relationship between anisotropic
morphology and flow direction.

In our work, the conservation equations are used to com-
pute nutrient distributions and the velocity field; a cellular
automaton(CA) simulates the growth of the bacterial colony.
Biofilm internal structure is viewed as a porous medium with
variable properties in space and time. Beer and Stoodley[18]
modeled nutrient transport into the biofilm assuming it to be
a porous media with constant properties. By contrast, in our
model porosity is variable and is updated at discrete time
steps from the colonization mean values produced by the
CA; tortuosity and permeability are deduced from theoretical
and empirical relationships, respectively, following the re-
sults of Islas-Juarez[19] and Cussler[20]. The CA simulates
the evolution of the bacterial community’s spatial structure
based in cell division, space competition, and substrate con-
centrations. Within the biofilm, Darcy’s law, mass conserva-
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tion, and species balance equations(all of them dynamic
properties) are used to compute pressure, velocity, and nutri-
ent distribution. Under a certain hypothesis, stated in the next
section, on the bulk fluid outside the biofilm, the Navier–
Stokes and species conservation equations were simplified to
a perturbed Poiseuille flow and a constant concentration so-
lution. Using all of these assumptions our two-dimensional
model is capable of reproducing biofilm internal heterogene-
ities, biofilm surface behavior, nutrient penetration, and bio-
film critical point of rupture or detachment. Results for po-
rosity, nutrient distribution, average surface location, and
rupture times are presented.

II. CONTINUOUS AND DISCRETE MODEL
IN THE BACTERIAL BIOFILM

In this section we present some methodological consider-
ations about coupling continuous and discrete formalism for
a bacterial biofilm. After that, those ideas are applied to a
particular case. In the model overview presented in the In-
troduction we indicated that biofilm behavior is modeled
with a CA while the nutrient distribution and fluid dynamics
are described with a continuous model. The conservation
equations and the CA are coupled through porosity, perme-
ability, tortuosity, biofilm-fluid interface position, concentra-
tion, and rate consumption of nutrients.

Given the hybrid nature of our model we used two
coupled grids for the computer implementation: one for the
CA and another for the conservation equations. In both cases
the grid size was carefully chosen for consistency with the
definition of porous media, where the characteristic porous
length, the bacterial size, must be very small compared to a
control volume in the continuum formulation. Our scheme
allowed us to have up to 50350 CA grid nodes in each
continuum control volume(see Fig. 1).

The algorithm for our computer implementation is shown
schematically in Fig. 2. The simulation begins with an initial
random bacterial distribution to generate the initial values for
porosity sfd, permeabilityskd, tortuositystd, interface posi-
tion sGd, and nutrient rate consumptionsAd. Using these vari-
ables the conservation equations compute the nutrient distri-
bution in the biofilm sYfd. Once this is done, the nutrient

concentration is used by the CA and new porosity, perme-
ability, tortuosity, and interface values are generated. This
cycle is repeated until the final time is reached or a breaking
condition is satisfied. This rupture condition is derived from
considerations on biofilm mechanical resistance and stresses
induced by the fluid drag.

III. MODEL DESCRIPTION

Our model describes the interaction of fluid dynamics,
nutrients distribution, and biofilm internal structure. How-
ever, in order to derive our model we considered the large-
scale problem of fluid flow in a channel where the biofilm is
an obstacle. Given the small dimensions of biofilms com-
pared to the diameter of an oil pipe or even a catheter in
medical applications, the effect of a biofilm patch on the
velocity profile of a fluid is hardly of relevance. We present it
here because it is useful, in our opinion, to keep track of the
multiple spatial and temporal scales involved in the biofilm-
fluid interaction.

At the larger spatial scale, the physical model consists of
a fluid flowing between two parallel plates separated by a
distance 2h, lengthL, with L@h, and infinite depth to simu-
late an effective two-dimensional system. The fluid of vis-
cosity m and flow rateQ is carrying nutrients with concen-
tration Yf. A bacterial biofilm with surfaceGsx,td!h grows
attached to the plates surface, where the coordinate system
sx,yd is shown in Fig. 3.

To simplify the free flow problem we specify the follow-
ing:

(i) in y=h there exists symmetrical planes; this approxi-
mation is valid whenG!h; (ii ) the fluid velocity into the
bacterial film(porous medium) is very small compared with
the free flow mean velocity.

FIG. 1. Grids used for the discrete and continuous model.

FIG. 2. Schematic procedure for solving the hybrid model.

FIG. 3. Physical model to study.
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Using the above assumptions the flux between the channel
walls and the porous layer can be modeled as a perturbed
Poiseuille flow with velocityupsx,y,td and pressurepfsxd
given by

up =
3

4

Q

h − G
F1 −

sh − yd2

sh − Gd2G andpf = p0 −
3

2
QmE

0

x dx8

sh − Gd3 ,

s1d

where p0 is the pressure atsx=0d. Note that the order of
magnitude of the characteristic substrate-concentration varia-
tions sDYfd along the channel can be obtained by comparing
of the convective substrate flux along the longitudinal direc-
tion fQDYf / shLdg and the diffusive ingoing fluxes in the
transversal directionsJb/hd, where Jb is the characteristic
substrate consumption rate within the biofilm. Therefore we
postulate that

DYf ,
LJb

Q
! 1, s2d

and then the concentration along the duct can be considered
constantYsx,y,td=Yf implying that the fluid is always car-
rying the original substrate concentration.

IV. POROUS FLOW

Within the biofilm the mass conservation equation for
variable porosity is given by

]

] t
ffr + s1 − fdrbg + ¹W · sruWd = 0, s3d

where r and rb are the fluid and bacterial mass densities,
respectively, anduW =ux̂+vŷ is the velocity vector. The rela-
tionship between velocities and pressure is governed by Dar-
cy’s law:

u = −
k

m

] p

] x
andv = −

k

m

] p

] y
. s4d

The mass nutrient fractionY is governed by the species bal-
ance equation for variable porosity and low velocities where
dispersion effects are neglected:

f
] Y

] t
+ uW ·¹W Y = ¹ · sfDf¹Yd + A, s5d

where A is the substrate consumption rate, andDf is the
effective molecular diffusion coefficient of nutrients in the
fluid. The relationshipDf=D /t is used, whereD is the free
molecular diffusion coefficient. It is assumed that tortuosity
is related to porosity by the formula derived by Islas-Juarez
[18] and Cussler[19]:

t = 1 +
a2s1 − fd2

f
. s6d

This relationship is based on a brick arrangement geometric
model wherea is an adjustment parameter related to the
mean brick aspect ratio. Permeability can be calculated using
[21]

k =
rb

2

16s1 − fd3/2f1 + 64s1 − fd3g
, s7d

where rb is the average bacterial radius. This empirical
model was obtained for a fibrous medium but it works very
successfully for random beds of ellipsoids[22] that corre-
spond to the bacterial model that we use in this work.

A. Initial and boundary conditions

To solve Eqs.(3)–(5) it is necessary to specify initial and
boundary conditions. Initially there is a known substrate con-
centration inside the biofilmYsx,y,t=0d=Yini. The initial
biofilm profile Gsx,t=0d is defined as[23]

Gsx,t = 0d = G0
˜ + Ĝ0 sinskGxd. s8d

Here,G̃0 is the profile average value,Ĝ0 andkG represent the
amplitude and wave number of a small sinusoidal perturba-
tion, respectively. The initial porosityfsx,y,t=0d is gener-
ated sorting occupancy in the automaton grid and using the
expression

fsx,y,t = 0d = fmin +
N0

NT
s1 − fmind s9d

in each control volume below the interfaceGsx,t=0d, where
fmin is the minimum porosity that the bacterial film can
reach,N0 and NT are empty and total sites in the control
volume used to compute porosity, respectively. This proce-
dure to calculate porosity is always used but bacterial occu-
pancy is obtained from the CA. Once the porosity is calcu-
lated, Eqs.(6) and (7) give the values for tortuosity and
permeability.

It is assumed thatx=0, x=L, and y=0 are impermeable
barriers, so that the boundary conditions for pressure and
nutrient concentration are

F ] p

] x
G

x=0,L
= F ] Y

] x
G

x=0,L
= F ] p

] y
G

y=0
= F ] Y

] y
G

y=0
= 0.

s10d

On Gsx,td the pressure and nutrient concentration must be
continuous functions, therefore

psx,y = G,td = p0 −
3

2
QmE

0

x dx8

sh − Gd3 andYsx,y = G,td = Yf .

s11d

B. Dimensionless equations

Equations(3)–(7) and boundary conditions(8)–(11) can

be put in dimensionless form usingx* =x/L, y* =y/ G̃0, t*

= t / tCB, Y* =Y/Yf, g=G / G̃0, k* =k/ rb
2, a=AG̃0

2/ sDYfd, and
p* =2h3sp0−pd / s3mQLd where tCB is the average bacterial
life time. Combining Darcy’s law and mass conservation
equations, and removing the superscript * for simplicity, the
dimensionless system of equations can be written as
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«2] k

] x

] p

] x
+

] k

] y

] p

] y
+ «2k

]2p

] x2 + k
]2p

] y2 = − «2V
] f

] t
, s12d

§f
] Y

] t
+ «2bk

] p

] x

] Y

] x
+ bk

] p

] y

] Y

] y

= FF«2]2Y

] x2 +
]2Y

] y2G + «2] F

] x

] Y

] x
+

] F

] y

] Y

] y
+ a,

s13d

gsx,t = 0d = 1 +
Ĝ0

G̃0

sinsLkTxd, Y = sx,y,t = 0d =
Yini

Y0
,

s14d

F ] p

] x
G

x=0,1
= F ] Y

] x
G

x=0,1
= F ] p

] y
G

y=0
= F ] Y

] y
G

y=0
= 0,

s15d

Ysx,y = g,td = 1, psx,y = g,utd =E
0

x dx8

s1 − gdd3 , s16d

where «=G̃0/L, b=3rb
2QL/ s2Dh3d, §=G̃0

2/ stCBDd, V

=2h3Lsr−rbd / s3Qrb
2tCBrdd=G̃0/h, and F=f2/ ff+a2s1

−fd2g. Here, b is the ratio of convective to diffusive sub-
strate fluxes,« represents the aspect ratio of the bacterial
film, § is the relationship between diffusive and bacterial life
times, d is the relative amount of the channel occupied by
bacterial film, andV is the ratio of characteristic convection
time and mean bacterial life time. Equations(12)–(16) are
solved simultaneously coupled with the CA.

C. Cellular automaton

In the CA each lattice node is identified by a state that can
be occupied(1) by a bacterium or empty(0) and by the
nutrient concentration. The temporal evolution of the bacte-
rial population is governed by the following local rules.

(i) Colonization (cell division). An empty node can be
occupied with probabilityNeR/4 whereNe is the number of
occupied nodes in this so-called von Neumann neighbor-
hood, andR is the probability of colonization of unoccupied
sites. This can be thought of as bacterial replication. A node
needs to have a minimum substratum concentrationYmin, to
be colonized by a bacteria. When a node is colonized there is
an incrementDab in the substratum consumption rate matrix.

(ii ) Mortality (competition). An occupied node can be-
come empty with probabilityN0P/4, whereN0 is the number
of occupied nodes in this von Neumann neighborhood with
P is the probability of death due to competition for space and
resources. Also, the node becomes empty if the amount of
substratum is less than a minimumYmin to stay alive, when it
occurs there is a decrementDad in the substratum consump-
tion rate matrix.

A two-dimensional lattice with periodic boundary condi-
tions was used. The initial condition was a random distribu-

tion of 80% occupied cells in the area belowGsx,t=0d, for
fmin=0.20 it produced a mean biofilm porosity of 37.3%.

V. ASYMPTOTIC AND NUMERICAL SOLUTIONS

In practical cases, the parameters defined above behave
like §→0, V,1, b,1, d!1, and «!1. To simplify the
problem we solved for the case§=0, since convective times
are very small compared with the characteristic life time of
an individual bacterium provided the temporal variation of
substrate concentration can be neglected. Since«!1 it is
possible to use an asymptotic expansion[24] for pressure
and concentration in terms of powers of«2:

p = o
n=0

`

pn«2n andY = o
n=0

`

Yn«2n. s17d

To order zero, the pressure and substrate concentration sys-
tems are

] k

] y

] p0

] y
+ k

]2p0

] y2 = 0, s18d

bk
] p0

] y

] Y0

] y
= F

]2Y0

] y2 +
] Y0

] y

] F

] y
+ a, s19d

F ] p0

] y
G

y=0
= 0, p0sx,y = g,td =E

0

x dx8

s1 − gdd3 , s20d

F ] Y0

] y
G

y=0
= 0 and Y0sx,y = gd = 1. s21d

These equations can be integrated once to get

p0sxd =E
0

x dx8

s1 − gdd3 . x + 3dE
0

x

gdx8

and

] Y0

] y
= −

1

F
E

0

y

ady8. s22d

After the CA generatesg, f, anda these equations can be
solved using standard finite-difference numerical methods.
To order«2, equations for the pressure and concentration are

]

] y
Sy

] p1

] y
D = − 3dk

] g

] x
− s1 + 3dgd

] k

] x
− V

] f

] t
, s23d

]

] y
SF

] Y1

] y
D = −

]

] y
SF

] Y0

] x
D + bks1 + 3dgd

] Y0

] x

+ bk
] p1

] y

] Y0

] y
, s24d
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S ] p1

] y
D

y=0
= p1sy = gd = 0 and S ] Y1

] y
D

y=0
= Y1sy = gd = 0.

s25d

Finally, to order«4, equations for the pressure and concen-
tration are

]

] y
Sy

] p2

] y
D =

]

] x
Sk

] p1

] x
D , s26d

]

] y
Sk

] Y2

] y
D = −

]

] x
Sk

] Y1

] x
D + bkFs1 + 3dgd

] Y1

] x
+

] p1

] x

] Y0

] x

+
] p1

] y

] Y1

] y
+

] p2

] y

] Y0

] y
G , s27d

S ] p2

] y
D

y=0
= p2sy = gd = 0 and S ] Y2

] y
D

y=0
= Y2sy = gd = 0.

s28d

The right-hand sides in Eqs.(22)–(28) are known functions
that depend on previous orders, so they can be easily inte-
grated numerically for eachx using finite differences and
three-diagonal matrixes. This solution method was selected
because it has numerical advantages mainly; it is fast and
does not need huge amounts of memory. The grid size used
was 2003200, the programming language wasFORTRAN

running on a Pentium 4 machine.

VI. BREAKING CONDITION

For eachx, the maximum nutrient concentration exists in
the neighborhood ofG; below the interface the nutrient con-
centration decreases with depth. If the biofilm grows enough
the nutrient concentration may reach a critical value at the
bottom of the biofilm, near the attachment interface, and the
bacteria can no longer reproduce or stay alive. There are
studies centered on biofilm disintegration and detachment
that consider the effect of fluid flow over the biofilm surface
[15,25–27]. Cellular automata have been used to study bio-
film structure and detachment. In particular, Hermanowicz
[28,29] used a probabilistic model for detachment using bio-
film strength and hydrodynamic shear stress in a cellular au-
tomata, and Indekeuet al. [30] using a cellular automaton
characterized the relative importance of the nutrient supply
process to determine the biofilm structure.

We assume that microbial death within the biofilm weak-
ens attachment strength and mechanical resistance proper-
ties, especially at the bacteria-plate interface. It is know that
in Pseudomonas fluorescenceforms very quickly in well-
oxygenated environments but, as oxygen is depleted due to
biofilm growth, biofilm disintegration develops[31]. This
disintegration may be due to denaturalization of the ex-
trapolyscaccharide(EPS) substance matrix that surrounds the
biofilm. In our model we are not considering the EPS but,
phenomenologically, cell death correlation with nutrient
depletion and biofilm growth is a reasonable approximation
to the process. It is true that, as discussed by Lewis[3],

biofilm destruction due to nutrient limitation other than oxy-
gen has not been conclusively demonstrated but it is a rea-
sonable and it is a potentially powerful mechanism to induce
biofilm destruction. Therefore, under the biologically reason-
able assumption that nutrient depletion is associated with
biofilm destruction, a very simple model was developed to
predict the breaking point of the bacterial film. Let us assume
that a sectionxb−xa at the solid plate-bacteria interface loses
its mechanical resistance properties due to bacterial death. To
produce a rupture, the forces per unit length due to fluid drag
sFdd must be greater than a critical value that depends on the
thickness and the internal structure of the biofilm(see Fig.
4).

uFdu = UE
xa

xb

m
] up

] n
dsU . saGsxad, s29d

wheren andds are the normal and differential arc surface in
G, respectively, andsa is the maximum stress that the bio-
film can resist. Usingup this relationship in dimensionless
form can be rewritten as(and removing the superscript *)

UE
xa

xb 1

s1 − dgd2Î1 + «2S ] g

] x
D2

dxU . P0gsxad, s30d

where P0=2saG̃0h
2/ s3QmLd represents the ratio between

drag and mechanical resistance forces.

VII. RESULTS AND DISCUSION

The numerical results presented in this section were cal-
culated with: a=0.57, d=1310−2, V=1310−4, b
=1310−4, «=0.01, P0=0.11 (to estimate this parameter,s
was taken from Picioreanu[15] ), Dab=0.07, Dad=0.04,
Ymin/Yf =0.5, and different values forR andP.

Heterogeneities within the biofilm are apparent in the po-
rosity distribution. Figure 5(a) shows the porosity field
within the biofilm for t=250,R=0.04, andP=0.03. The cor-
responding nutrient distribution is shown in Fig. 5(b). Note
that nutrient distribution, especially near the fluid-biofilm in-
terface, depends mainly on the bacterial layer thickness and
to a minor degree on the heterogeneities in porosity, perme-
ability, and tortuosity. It is convenient here to remind the
reader that parameterR represents the likelihood of coloni-
zation of empty spaces within the biofilm, and the parameter
P represents the likelihood of bacterial extinction(death) due
to competition from other bacteria.

The mean thicknesssḡd evolution for ten simulations is
presented in Fig. 6(a) where the bacterial life history param-
eters wereP=0.03 for different values forR. The figure
shows the point at which the biofilm becomes unstable and

FIG. 4. Model to describe the breaking point in the biofilm.
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detaches from the plate; at this pointḡ is wide enough to
prevent nutrient diffusion and convection to the bottom of
the film inducing bacterial death. It is possible to observe for
small values ofR that there is a transient where the bacterial
surface decreases before the period of accelerated growth
ensues. This behavior is consistent with the actual dynamics
of bacterial and microbial growth.

Our results also show that the biofilm mean porosity
evolves through time until it reaches an asymptotic value that
depends on the bacteria population parameters,R andP. Fig-

ure 6(b) shows the porosity temporal evolution forP=0.03
and different values inR, where it can be observed that the
equilibrium mean porosity value is inversely proportional to
R. Just before biofilm rupture there is a pronounced increase
in porosity, indicative of massive bacterial death. Thus there
exists a critical time when bacteria begin to die inducing a
sudden porosity increase.

Figure 7 shows the mean equilibrium porosity valuefeq
and standard deviation for different values ofR andP. These
two estimators were obtained after 20 simulations for each
pair R andP with Rù P (whenR, P the biofilm is unstable
since the probability of death is larger than the probability of
birth). The equilibrium porosity valuefeq is proportional to
P. In the figure it can be observed that a large death prob-
ability associated with a large colonization rate gives a nar-
rower porosity range at equilibrium; moreover, for a fixed
death rate, increasing the colonization potential reduces po-
rosity at equilibrium(before detachment).

In Fig. 8 the average critical thicknessḡc in 20 simula-
tions is plotted. Minimal biofilm growth occurs forP=R;
whenR is slightly bigger thanP the mean surface increases
to a maximum value; after this maximum is reached the be-
havior is monotonically decreasing for increasing values of
R. All of the graphs show that, for each death rate(compe-

FIG. 5. (a) Porosity distribution and(b) dimensionless nutrient
distribution as function of the dimensionless longitude.

FIG. 6. (a) Mean biofilm thickness and(b) mean porosity values
as a function of the dimensionless time.

FIG. 7. Equilibrium porosity values for different CA
parameters.

FIG. 8. Dimensionless critical mean thickness as a function ofR
for different values ofP.
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tition strength), there is a criticalR (colonization strength)
where thickness reaches a maximum. Note that the maxi-
mum thickness is roughly the same for allP. However, asR
increases beyond the point of maximum thickness the range
of variability for critical thickness(that can be seen as a
heterogeneity measurement) becomes narrower meaning that
for large colonization capability, variability in thickness be-
fore detachment is reduced.

The time to reach the breaking condition and its standard
deviation as functions ofR for different values inP are
shown in Fig. 9. Here again the mean and standard deviation
were calculated after 20 simulations. This figure shows that
the time needed to reach the breaking condition is inversely
proportional toR and proportional toP. A minimum in the
curves is presented whenR=P except forP=0.01 where the
variance is too large to capture this behavior. Note that,
roughly, the smaller the death rateP is (competition
strength), the longer it takes for the biofilm to detach and
that, again, for a fixedP, increases in colonization capabili-
ties R decrease the time to detachment.

VIII. CONCLUDING REMARKS

In a recent paper[32], the development and detachment of
biofilms of Pseudoalteromonas tunicata, a marine bacterium,
was investigated. The paper explored the role that cell death
plays in the structure of biofilms. The authors found that this
species shows a reproducible pattern of cell death that, in the
long term, may play an important role in biofilm dispersion.
Dead cells were observed between 48 and 95 h of develop-
ment of consortia, and regions of extensive killing occurred
into the biofilms that induced its detachment. The paper
points out that cell death inside biofilms may be a wide-
spread phenomenon of importance for biofilm dispersal but
that little is known about the mechanisms by which biofilms
with holes within are formed.

In the model we have developed along this work we con-
sider several time and spatial scales to deal with. We have,
certainly, disregarded several biofilm components and their
associated dynamics as we have mentioned before. The
model is built upon two submodels: the fluid dynamics
model and the population dynamics submodel. The creation

of voids within biofilms is a process that occurs with tempo-
ral and spatial organization during biofilm development. In
particular, cell death and the creation of voids are important
in the detachment process. Our approach is an approximation
to the processes of cell death and void creation but we do not
explicitly attempt determine the mechanisms that produce
the voids since these are still unclear as discussed by Mai-
Prochnowet al. [32] and Webbet al. [33].

We believe our model presents a plausible explanation for
the process of biofilm development, the formation of cavities
or pores within its structure, and the final detachment pro-
cess. Our model can reproduce the heterogeneous behavior
of a bacterial layer, its rupture, and the surface fingering
behavior. We have shown that nutrient distribution depends
mainly on biofilm thickness and in a lesser degree on hetero-
geneities in porosity, tortuosity, and permeability. Through
numerical investigation of our model we have found that
there exists a critical thickness such that nutrient concentra-
tion at the substrate-biofilm interface is not enough to main-
tain the bacteria alive. At this point, the biofilm begins to
lose its mechanical resistance that combined with the fluid
drag forces leads to the detachment/rupture processes.

The average porosity shows a transient behavior before an
equilibrium value is reached that depends onR and P as
described in the previous section. After this critical point is
achieved, porosity rapidly increases until the bacterial layer
breaks. The breaking time strongly depends on the param-
etersR andP. Heterogeneity plays an important role in this
problem, particularly in the breaking times and average sur-
face growth, as shown in Figs. 8 and 9, the dependence is
less evident for the mean porosity value, where the standard
deviation is small as shown in Fig. 7.

Current research is under way to model multispecies bio-
films where the effects of metabolic waste and biocide appli-
cation over the colony are evaluated as well as drag effects
over the growth surface among other things. Needless to say,
the fluid dynamics can be improved by considering disper-
sion processes, including permeability and tortuosity models
applicable to bacterial layers.

The model describes the behavior of a two-dimensional
biofilm coupling conservation equations and a cellular au-
tomaton. Since transport characteristic times are shorter than
the mean bacterial life, it was possible to simplify the equa-
tions by neglecting temporal derivatives except for the po-
rosity. The numerical grids used to solve the system were
designed to satisfy the control volume porous medium defi-
nition by assuming that the characteristic bacterial length is
very small compared with the continuum control volume. In
our model bacterial grid density is larger than the corre-
sponding density for the conservation equations grid.

We must point out that our model does not consider the
effect on biofilm dynamics of the EPS. It is known that the
EPS plays a role in certain types of antibiotic neutralization
and that its mechanical and physical characteristics are im-
portant in biofilm constitution and transport of cell signaling,
nutrient, biocide, diffusion, and so forth. However, it is also
known [3] that, at least inPseudomonas aeruginosa, the ex-
pression of the quorum sensing factor HSL although required
for the conformation of a biofilm with typical architecture
(channels, mushroom structures, and so forth) is not associ-

FIG. 9. Biofilm breaking dimensionless time as a function of
R.
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ated with their ability to resist killing by antibiotics, that is,
typical biofilm architecture does not matter that much in this
case. So although we are aware that not introducing EPS into
our model may make it less general, as far as our objectives
are concern, it is a reasonable assumption.

Obviously our breaking condition must also be improved
and it must incorporate the mechanical effects of the EPS
matrix. However, the scale at which our model works, and
the phenomenological nature of its conception, makes it pos-
sible to neglect the EPS matrix in this case too. Our main
interest has been to study the interactions of biofilm growth
with the fluid. The scale at which we have modeled biofilm
growth does not involve the mechanical restrictions that the
EPS imposes. Bacterial growth is modeled essentially as a
random undirected process that depends on the state of local
neighborhoods. A more realistic approach would be to con-
sider EPS development and the associated geometric con-
straints for bacterial growth. This is an ongoing project for
which only incipient results exist at the moment.

Donlan [1] review on biofilms observes that to explain
biofilm detachment three processes appear to be the most
important: erosion or shearing, sloughing, and abrasion. The
model presented in this paper addresses the issue of slough-
ing due to nutrient depletion. As stated by Lewis[3], genes

controlling biofilm destruction can be a very important factor
for eradication of biofilms. Our model, although in theoreti-
cal terms, is able to reproduce breaking/detachment, what
amounts to biofilm destruction, under the simple and reason-
able hypothesis of postulating a correlation between detach-
ment and nutrient depletion. Assuming the existence of drugs
that attack the biofilm self-destruction pathways, this may be
the way to go for the efficient eradication of biofilms[3]. We
believe our model gives theoretical support for such idea
based on simple physical and biological postulates.

Finally, we would like to point out that with our approach
it is possible to estimate the dimension of the alive bacterial
layer if we assume that dead bacteria are not washed away,
but become part of the EPS or biofilm supporting structure,
as described in Lunaet al. [34], where the fraction of living
versus dormant or dead bacteria is measured in marine sedi-
ments.
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